 Chapter 7: Multimedia networking
7.1 Multimedia networking applications
A multimedia network employs audio or video. 
7.1.1 Properties of video
· High bit rate: 100kbps  for low-quality video conferencing – 3 Mbps streaming high-definition movies. Therefore, when designing networked video applications, the first thing we must keep in mind is the high bit-rate requirements of video’s.

· An uncompressed, digitally encoded image consists of an array of pixels, with each pixel encoded into a number of bits to represent luminance and color.

· There are 2 types of redundancy in video, both of which can be exploited by video compression:
· Temporal redundancy: instead of sending complete frame at i+1, send only differences from frame i. 
· Spatial redundancy:  instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

We can also use compression to create multiple versions of the same video, each at a different quality level. 

7.1.2 Properties of audio
Digital audio (including digitized speech and music) has significantly lower bandwidth requirements than video. The basic encoding technique is pulse code modulation (PCM). Speech encoding often uses PCM, with a sampling rate of 8000 samples per second and 8 bits per sample, resulting in a rate of 8000 samples x 8bits = 64000 bits per second or 64kbps.  
PCM-encoded speech and music, however, are rarely used in the internet. Instead, as with video, compression techniques are used to reduce the bit rates of the stream. A popular compression technique for near CD-quality stereo music is MPEG 1 layer 3 (MP3). MP3 encoders can compress to many different rates; 128 kbps is the most common encoding rate and produces very little sound degradation. A related standard is Advanced Audio Coding (AAC). Multiple versions of a prerecorded audio stream can be created, each at a different bit rate. 
7.1.3 Types of multimedia network applications
1) Streaming stored video: 
The client begins the video playout within a few seconds after it begins receiving the video from the server. This means that the client will be playing out from one location in the video while at the same time receiving later parts of the video from the server ( = streaming). This avoids having to download the entire file before playout begins.
Interactivity: because the media is prerecorded, the user can pause, reposition forward, … 
Continuous playout: once playout of the video begins, it should proceed according to the original timing of the recording. Therefore, data must be received from the server in time for its playout at the client.
In order to provide continuous playout, the network must provide an average throughput to the streaming application that is at least as large as the bit rate of the video itself. For many applications, prerecorded video is stored on, and streamed from a CDN rather than from a single data center.  
2) Conversational voice-and video-over-IP
 Voice-over-IP (VOIP) includes the video of the participants as well as their voices ex. Skype, QQ, Google talk,… . Timing considerations are important because audio and video conversational applications are highly delay-sensitive. On the other hand, conversational multimedia applications are loss-tolerant – occasional loss only causes occasional glitches in audio/video playback, and these losses can be partially or fully concealed.
3) Streaming live audio and video
These applications allow a user to receive a live radio or television transmission. Live, broadcast-like applications often have many users who receive the same audio/video program at the same time. Although the distribution of live audio/video to many receivers can be efficiently accomplished using IP multicasting techniques. 
As with streaming stored multimedia, the network must provide each live multimedia flow with an average throughput that is larger than the video consumption rate. Because the event is live, delay can also be an issue, although the timing constraints are much less stringent than those for conversational voice.
7.2 Streaming stored video
when a video starts to arrive at the client the client need not immediately begin playout, but can instead build up a reserve of several seconds of buffered-not-yet-played video, the client can then begin video playout. There are 2 important advantages of client buffering:

· The client-side buffering can absorb variations in server-to-client delay. If a particular piece of video data is delayed, as long as it arrives before the reserve of received-but-not-yet-played video is exhausted, this long delay will not be noticed. 
· The client-to-server bandwidth briefly drops below the video consumption rate, a user can continue to enjoy continuous playback, again as long as the client application buffer does not become completely drained.

Streaming video systems can be classified into three categories:
1) UDP streaming
With UDP streaming, the server transmits video at a rate that matches the client’s video consumption rate by clocking out the video chunks over UDP at a steady rate. Because UDP does not employ a congestion-control mechanism, the server can push packets into the network  at the consumption rate of the video without the rate-control restrictions of TCP. UDP streaming typically uses a small client-side buffer, big enough to hold less than a second of video. Before passing the video chunks within the transport packets specially designed for transporting audio and video, using the Real-Time Transport Protocol (RTP). The client and server also maintain, in parallel, a separate control connection over which the client sends commands regarding session state changes. 

Although UDP streaming has been employed in many open-source systems and proprietary products, it suffers from 3 significant drawbacks:

· Constant-rate UDP streaming can fail to provide continuous playout

· UDP streaming requires a media control server, such as an RTSP server, to process client-to-server interactivity requests and to track client state for each ongoing session

· Many firewalls are configured to block UDP traffic, preventing the users behind these firewalls from receiving UDP video
2) HTTP streaming
The video is stored in an HTTP server as an ordinary file with a specific URL. When a user wants to see the video, the client establishes a TCP connection with the server and issues an HTTP GET request for that URL. The server then sends the video file, within an HTTP response message, as quickly as possible, that is as quickly as TCP congestion control and flow control will allow. On the client side, the bytes are collected in a client application buffer. Once the number of bytes in this buffer exceeds predetermined threshold, the client application begins playback. It periodically grabs video frames from the client application buffer, decompresses the frames, and displays them on the user’s screen.  The use of HTTP over TCP also allows the video to traverse firewalls and NAT’s more easily. Streaming over HTTP also obviates the need for media control server, such as an RTSP server. 

· Prefetching video: the client can attempt to download the video at a rate higher than the consumption rate, thereby prefetching video frames that are to be consumed in the future. 

· Client application buffer and TCP buffers: a full client application buffer indirectly imposes a limit on the rate that video can be sent from server to client when streaming over HTTP (vb. p 623).

· Analyses of video streaming: when the available rate in the network is less than the video rate, playout will alternate between periods of continuous playout and periods of freezing. Note that when the available rate in the network is more than the video rate, after the initial buffering delay, the user will enjoy continuous playout until the video ends.

·  Early termination and repositioning the video: HTTP byte-range header in the HTTP GET request message, which specifies the specific range of bytes the client currently wants to retrieve from the desired video. When the user repositions to a new position, the client sends a new HTTP request, indicating with the byte-range header from which byte in the file should the server send data. When the server receives the new HTTP request, it can forget about any earlier request and instead send bytes beginning with the byte indicated in the byte range request.
3) Adaptive HTTP streaming

It has a major shortcoming: all clients receive the same encoding of the video, despite the large variations in the amount of bandwidth available to a client. This has led to a new development of HTTP-based streaming: Dynamic Adaptive Streaming over HTTP (DASH). In DASH, the video is encoded into several different versions, with each version having a different bit rate and, correspondingly, a different quality level. The client dynamically requests chunks of video segments of a few seconds in length from the different versions. When the amount of available bandwidth is high, the client naturally selects chunks from a high-rate version; and when the available bandwidth is low, it selects from a low-rate version. The client selects different chunks with HTTP GET request messages. 

With DASH, each video version is stored in the HTTP server, each with a different URL. The HTTP server also has a manifest file, which provides a URL for each version along with its bit rate. The client first requests the manifest file and learns about the various versions. The client then selects one chunk at a time by specifying a URL and a byte range in an HTTP GET request message for each chunk. While downloading chunks, the client also measures the received bandwidth and runs a rate determination algorithm to select the chunk to request next.

The server not only stores many versions of the video but also separately stores many versions of the audio. Each audio version has its own quality level and bit rate and has its own URL. In these implementations, the client dynamically selects both video and audio chunks, and locally synchronize audio and video playout.

7.2.4 Content distribution networks

CHALLENGE: how to stream content of thousands of simultaneous users?

Option 1: Mega-server
For an internet video company, perhaps the most straightforward approach providing streaming video service is to build a single massive datacenter, store all of its videos in the data center, and stream the videos directly from the data center to clients worldwide.
But there are 3 major problems:
· If the client is far from the data center, server-to-client packets will cross many communication links
· Popular video will likely be sent many times over the same communication links. Not only does this waste network bandwidth, but the internet video company itself, will be paying its provider ISP for sending the same byes into the internet over and over again
· The data center represents a single point of failure

Option 2: Store/serve multiple copies of videos at multiple geographically distributed sites (CDN) . The CDN may be private or a third-party CDN
· Enter deep: the goal is to get close to end users, thereby improving user-perceived delay and throughput by decreasing the number of links and routers between the end user and the CDN cluster (used by Akamai, 1700 locations)
· Bring  home: by building large clusters at a smaller number of key locations and connecting these clusters using a private high-speed network. Instead of getting inside the access ISP’s, these CDN’s typically place each cluster at a location that is near the POP’s of many tier-1 ISPs.

CDN operation
When a browser in user’s host is instructed to retrieve a specific video, the CDN must intercept the request so that it can (1) determine a suitable CDN server cluster for that client at that time, and (2) redirect the client’s request to a server in that cluster (ex. P 630-631)

Cluster selection strategies

CHALLENGE: how does CDN DNS select “good” CDN node to stream to client?
· Pick CDN node geographically closest to the client: the CDN learns the IP address of the client’s LDNS server via the client’s DNS lookup. After learning this IP address, the CDN needs to select an appropriate cluster based on this IP address. 
· Pick CDN node with the shortest delay to client
· IP anycast: the idea is to have routers in the internet route the client’s packets to the closest cluster, as determined by BGP. During the IP-anycast configuration stage, the CDN company assigns the same IP address from each of the different cluster locations. When a BGP router receives multiple route advertisements for this same IP address, it treats these advertisements as providing different paths to the same physical location. The BGP router will then pick the best route to the IP address according to its local route selection mechanism (ex p 633). When any client wants to see any video, the CDN’s DNS returns the anycast address, no matter where the client is located. When the client sends a packet to that IP address, the packet is routed to the closest cluster as determined by the preconfigured forwarding tables, which were configured with BGP.

ALTERNATIVE: let the client decide, give the client a list of several CDN servers. 
The client pings to the different servers and picks the best. This is the Netflix approach.

7.2.5 Case study: Netflix

Netflix has made extensive use of third-party cloud services and CDN’s. The Netflix video-streaming platform has four major components:
· The registration and payment servers
· The Amazon cloud
· Multiple CDN providers
· Clients 

How does it work?
1. Netflix receives studio master versions of movies and uploads them to hosts in the Amazon cloud
2. The machines in the Amazon cloud create many different formats for each movie. A different version is created for each format and at multiple bit rates, allowing for adaptive streaming over HTTP using DASH
3. Once all of the versions of a movie have been created, the hosts in the Amazon cloud upload the versions to the CDNs.
4. To deliver the movies to its customers on demand, Netflix makes extensive use of CDN technology. In fact, Netflix employs 3 third-party CDN companies at the same time.

When the user selects a movie to “play now”, the user’s client obtains a manifest file, also from the servers in the Amazon cloud. The manifest file includes a variety of information, including a ranked list of CDN’s and the URL’s for the different versions of the movie, which are used for DASH playback. After the client selects a CDN, the CDN leverages DNS to redirect the client to a specific CDN server. The client and that CDN server then interact using DASH. 

7.3 Voice-over-IP (VoIP)

Real-time conversational voice over the internet is often referred to as internet telephony.

7.3.1 Limitations of the best-effort IP service 

IP makes it best effort to move each datagram from source to destination as quickly as possible but makes no promises whatsoever about getting the packet to the destination within some delay bound or about a limit on the percentage of packets lost.

The server generates bytes at a rate of 8000 bytes per second; every 20 msecs the sender gathers these bytes into a chunk. A chunk and a special header are encapsulated in a UDP segment, via a call to the socket interface. If each packet makes it to the receiver with a constant end-to-end-delay, then packets arrive at the receiver periodically every 20 msecs. For this reason, the receiver must take more care in determining (1) when to play back a chunk, and (2) what to do with a missing chunk.

Packet loss

Loss could be eliminated by sending the packets over TCP rather than over UDP. However, retransmission mechanisms are often considered unacceptable for conversational real-time audio applications such as VoIP, because they increase end-to-end delay.

Packet loss between the 1 and 20 percent can be tolerated, depending on how voice is encoded and transmitted, and on how the loss is concealed at the receiver. Forward error correction (FEC) can help conceal packet loss.

End-to-end delay

End-to-end delay is the accumulation of:
· Transmission delay in the router
· Processing delay in the router
· Queuing delay in the router
· Propagation delay in links
· End-system processing delay

The receiving side of a VoIP application will typically disregard packets that are delayed more than a certain threshold.

Packet jitter

Because of these varying delays, the time from when a packet is generated at the source until it is received at the receiver can fluctuate from packet to packet. Jitter can often be removed by using sequence numbers, timestamps and a playout delay (ex p 640).

7.3.2 Removing jitter at the receiver for audio

This is typically done by combining these 2 mechanisms:
· Fixed playout delay: the receiver attempts to play out each chunk exactly q msecs after the chunk is generated. So if a chunk is timestamped at the sender at time t, the receiver plays out the chunk at time t + q, assuming the chunk has arrived by that time. Packets that arrive after their scheduled playout times are discarded and considered lost.
· Adaptive playout delay: by making the  initial playout delay large, most packets will make their deadlines and there will therefore be negligible loss; however, for conversational services such as VoIP, log delays can become bothersome if not intolerable. 
The natural way to deal with this trade-off is to estimate the network delay and the variance of the network delay, and to adjust the playout delay accordingly at the beginning of each talk spurt. This adaptive adjustment of playout delays at the beginning of the talk spurt will cause the sender’s silent periods to be compressed and elongated; however, compression and elongation of silence by a small amount is not noticeable in speech (p 643)
· adaptively estimate packet delay: 
 			di = (1-a)di-1 + a (ri – ti) 
· estimate average deviation of delay:
vi = (1-b)vi-1 + b | ri – ti – di |
· for first packet in talk spurt, the playout time is :
playout-timei = ti + di + Kvi
· the remaining packets in talkspurt are played out periodically


How does the receiver determine whether a packet is first in a talkspurt?
· If there is no loss, the receiver looks at successive timestamps. The difference of successive stamps > 20 msec then the talk spurt begins
· With possible loss, the receiver must look at both time stamps and sequence numbers. The  difference of successive time stamps > 20 msec and sequence numbers without gaps, then the talk spurt begins.	

7.3.3 Recovering from packet loss

Loss recovery schemes: schemes that attempt to preserve acceptable audio quality in the presence of packet loss. A packet is lost either if it never arrives at the receiver or if it arrives after it scheduled playout time. 
Retransmitting lost packet may not be feasible in a real-time conversational application such as VoIP. VoIP applications often use some type of loss application scheme. There are 2 types of loss application schemes:

· Forward error correction (FEC): the basic idea is to add redundant information to the original packet stream. The first mechanism sends a redundant encoded chunk after every n chunks. The redundant chunk is obtained by exclusive OR-ing the n original chunks. In this manner if any one packet of the group of n+1 packets is lost, the receiver can reconstruct the lost packet. This increases the playout delay, as the receiver must wait to receive the entire group of packets before it can begin playout.
Another FEC mechanism is to send  lower-resolution audio stream as the redundant information. The sender constructs the nth packet by taking the nth chunk from the nominal stream and appending to it the (n – 1) chunk from the redundant stream. In this manner, whenever there is nonconsecutive packet loss, the receiver can conceal the loss by playing out the low-bit rate encoded chunk that arrives with the subsequent packet.
By appending more low-bit rate chunks to each normal chunk, the audio quality at the receiver becomes acceptable for a wider variety of harsh best-effort environments. On the other hand, the additional chunks increase the transmission bandwidth and the playout delay. (dia 37)
· Interleaving: the sender resequences units of audio data before transmission, so that originally adjacent units are separated by a certain distance in the transmitted stream. If packets are lost, you still have most of every original chunk. There is no redundancy overhead, but interleaving increases the playout delay. A major advantage is that interleaving does not increase the bandwidth requirements of a stream (p 645)

7.3.4 Case study: VoIP with Skype

The peers in Skype are organized into a hierarchical network, with each peer classified as a super peer or an ordinary peer. Skype maintains an index that maps Skype usernames to current IP addresses. This index is distributed over the super peers. When Alice wants to call Bob, her Skype client searches  the distributed index to determine Bob’s current IP address.
P2P techniques are also used in Skype relays, which are useful for establishing calls between hosts in home networks. Many home network configurations provide access to the internet through NAT’s. Recall that a NAT prevents a host from outside the home network from initiating a connection to a host within the home network. If both Skype callers have NAT’s, there is a problem. The clever use of super peers and relays nicely solves this problem. Suppose that when Alice signs in, she is assigned to a non-NATed super peer and initiates a session to that super peer. This session allows Alice and her super peer to exchange control messages. The same happens for Bob when he signs in. now, when Alice wants to call Bob, she informs her super peer, who in turn informs Bob’s super peer, who in turn informs Bob of Alice’s incoming call. If Bob accepts the call, the 2 super peers select  a third non-NATed super peer (the relay peer) whose job will be to relay data between Alice and Bob.
7.4 Protocols for real-time conversational applications

7.4.1 RTP

RTP can be used for transporting common formats such as PCM, MP3,…. It can also be used for transporting proprietary sound and video formats.

RTP basics

RTP runs on top of UDP. The sending side encapsulates a media chunk within an RTP packet, then encapsulates the packet in a UDP packet, and then hands the segment to IP. The receiving side extracts the RTP packet from the UDP segment, then extracts the media chunk from the RTP packet, and then passes the chunk to the media player for decoding and rendering.
The sending side precedes each chunk of the audio data with an RTP header that includes the type that includes:
· The type of audio encoding
· A sequence number
· A timestamp
The header is usually 12 bytes. The audio chunk along with the RTP header form the RTP packet. 
The RTP packet is then sent into the UDP socket interface. At the receiver side, the application receives the RTP from its socket interface. The application extracts the audio chunk from the RTP packet and uses the header fields of the RTP packet to properly decode and play back the audio chunk.

It should be emphasized that RTP does not provide any mechanism to ensure time delivery of data or provide other quality-of-service (QoS) guarantees. It does not even guarantee delivery of packets or prevent out-of-order delivery of packets. Indeed, RTP encapsulation is seen only at the end of end systems. RTP allows each source to be assigned its own independent RTP stream. Routers do not distinguish between IP datagrams that carry RTP packets and IP datagrams that don’t.

RTP header

· Payload type (7bits): it indicates the type of encoding currently being used. If the sender changes encoding during call, the sender informs the receiver via payload type field
· Sequence number (16 bits): increments by one for each RTP packet sent. It may be used by the receiver to detect packet loss and to restore packet sequence
· Timestamp field (32 bits): the receiver can use timestamps to remove packet jitter introduced in the network and to provide synchronous playout a the receiver. If application generates chunks of 160 encoded samples, timestamp increases by 160 for each RTP packet when source is active. The timestamp clock continues to increase at constant rate when the source is inactive
· SSRC field (32 bits): it identifies the source of RTP stream. Each RTP session has distinct SSRC field

7.4.2 SIP

· it provides mechanisms for establishing calls between a caller and a callee over an IP network. It allows the caller to notify the callee that it wants to start a call. It allows the participants to agree on media encodings. It also allows participants to end calls
· it provides mechanisms for the caller to determine the current IP addresses of the callee. Users do not have a  single IP address because they may have multiple IP devices.
· It provides mechanisms for a call management, such as adding new media streams during the call, changing encoding during call, inviting new participants during call, call transfer, and call holding.

Setting up a call to a known IP address

1) Alice sends Bob a SIP INVITE message, which resembles an HTTP request message. This message is send over UDP. She  indicates her port number, an identifier for Bob, her IP address and the encoding she prefers to receive

2) Bob responds with a 200 OK message, indicating his port number, IP address and  preferred encoding

3) After receiving Bob’s response, she sends an SIP acknowledgement message. After this SIP transaction, they can talk

SIP messages can be sent over TCP or UDP. The default SIP port number is 5060. The SIP messages are sent and received in sockets that are different from those used for sending and receiving the media data. Second, the SIP messages themselves are ASCII-readable and resemble HTTP messages. Third, SIP requires all messages to be acknowledged, so it can run over UDP or TCP.

SIP message (p 656 voor voorbeeld)

Name translation and user location

When Alice does not know the IP address, Alice needs to obtain the IP address of the device that the user bob@domain.com is currently using. To finds this out, Alice sends an INVITE message that begins with INVITE bob@domain.com SIP 2/0 and sends this message to an SIP proxy. The proxy will respond with an SIP reply that might include the IP address of Bob’s mailbox, or a URL of a webpage. 

How can the proxy server determine the current IP address for bob@domain.com? 
Every SIP user has an associated registrar. Whenever a user launches an SIP application on a device, the application sends an SIP registrar message to the registrar, informing the registrar of its current IP address. The registrar is analogous to an DNS authoritative name server: the DNS server translates fixed hosts names to fixed IP addresses; the SIP registrar translates fixed human identifiers to dynamic IP addresses. 
Often SIP registrars and SIP proxies are run on the same host.

How can the SIP proxy server obtains Bob’s current IP address?
From the preceding discussion we see that the proxy server simply needs to forward Alice’s INVITE message to Bob’s registrar/proxy. The registrar/proxy could then forward the message to Bob’s current SIP device. Finally, Bob, having now received Alice’s INVITE message, could send an SIP response to Alice.


7.5 Network support for multimedia

There are 3 broad approaches towards providing network-level support for multimedia applications:
· Making the best of best-effort service: when demand increases are forecasted, the ISP’s deploy additional bandwidth and switching capacity to continue to ensure satisfactory delay and packet-loss performance. 
· Differentiated service: one type of traffic might be given strict priority over another class of traffic when both types of traffic are queued at a router
· Per-connection quality-of-service (QoS) guarantees: with per connection QoS guarantees, each instance of application explicitly reserves end-to-end bandwidth and thus has a guaranteed end-to-end performance.  A hard guarantee means the application will receive its requested quality of service with certainty. A soft guarantee means the application will receive its requested quality of service with high probability.

7.5.1 Dimensioning best-effort networks

To solve just about any problem where resources are constrained – is simply to throw money at the problem and thus simply avoid resource contention. In the case of networked media, this means providing enough link capacity throughout the network so that network congestion, and its consequent packet delay and loss, never occurs.
The question is how much capacity is enough to achieve this and whether the costs of providing enough bandwidth are practical from a business standpoint to the ISP’s. the question of how much capacity to provide at network links in a given topology to achieve a given level of performance is often known as bandwidth provisioning. The even more complicated problem of how to design a network topology to achieve a given level of end-to-end performance is a network design problem often referred to as network dimensioning.
The following issues have to be addressed in order to predict application-level performance between 2 network end points:
· Models of traffic demand between network end points
· Well-defined performance requirements
· Models to predict end-to-end performance for a given workload model, and techniques to find a minimal cost bandwidth allocation that will result in all users requirements begin met

7.5.2 Providing multiple classes of service

The simplest enhancement is to divide the traffic into classes, and provide different levels of service to these different classes of traffic. A number of residential wired-access ISP’s and cellular wireless-access ISP’s have adopted such tiered levels of service – with platinum-service subscribers receiving better performance than gold-of silver-service subscribers. 

Motivating scenarios

Insight 1: packet marking: allows a router to distinguish among packets belonging to different classes of traffic. This was the original goal of the type-of-service (ToS) field in IPv4.

Insight 2: traffic isolation: it is desirable to provide a degree of traffic isolation among these classes so that one class is not adversely affected by another class of traffic that misbehaves. 
2 broad approaches can be taken:
· It is possible to perform traffic policing: if a traffic class or flow must meet certain criteria, then a policing mechanism can be put into place to ensure that these criteria are indeed observed. If the policed application misbehaves, the policing mechanism will take some action so that the traffic actually entering the network conforms to the criteria
· Is for the link-level packet-scheduling mechanism to explicitly allocate a fixed amount of link bandwidth to each class. With strict enforcement of the link-level allocation of bandwidth, a class can use only the amount of bandwidth that has been allocated.

Insight 3: while providing isolation among classes or flows, it is desirable to use resources as efficiently as possible. The manner in which queued packets are selected for transmission on the link is known as the link-scheduling discipline. 

Insight 4: if sufficient resources will not always be available, and QoS is to be guaranteed, a call admission process is needed in which flows declare their QoS requirements and are then either admitted to the network or blocked from the network 


Scheduling mechanisms

· First-in-first-out: packets arriving at the link output queue wait for transmission if the link is currently busy transmitting another packet. If there is not sufficient buffering space to hold the arriving packet, the queue’s packet-discarding policy then determines whether the packet will be dropped (lost) or whether other packets will be removed from the queue to make space for the arriving packet.

· Priority queuing: packets arriving at the output link are classified into priority classes at the output queue. Each priority has its own queue. When choosing a packet to transmit, the priority queuing discipline will transmit a packet from the highest priority class that has a nonempty queue. The choice among the packets in the same priority class is typically done in an FIFO manner

· Round robin and weighted fair queuing (WFQ): packets are sorted into classes as with priority queuing. However, rather than there being a strict priority of service among classes, a round robin scheduler alternates among the classes.  Arriving packets are classified and queued in the appropriate per-class waiting area. As in round robin scheduling, a WFQ scheduler will serve classes in a circular manner – first serving class 1, then class 2 ,…. WFQ differs from round robin in that each class may receive a differential amount of service in any interval of time.
· In the simplest form of round robin scheduling, a class 1 packet is transmitted, followed by a class 2 packet.
· A work-conserving round robin discipline looks for a packet of a given class but finds none will immediately check the next class in the round robin sequence

Policing: the leaky bucket

One of our earlier insights was that policing, the regulation of the rate at which a class or flow is allowed to inject packets into the network, is an important QoS mechanism. We can identify 3 important policing criteria:

· Average rate: the network may want to limit the long-term average at which a flow’s packets can be sent into the network. A crucial issue here is the interval of time over which the average will be policed. A flow whose average rate is limited to 100 packets per second is more constrained than a source that is limited  to 6000 packets per minute, even though both have the same average rate over a long enough interval of time.
· Peak rate: a peak-rate constraint limits the maximum number of packets that can be sent over a shorter period of time

· Burst size: the network may also wish to limit  the maximum  number of packets that can be sent into the network aver an extremely short interval of time 

Buckets consists of a bucket that can hold up to b tokens. New tokens which may potentially be added to the bucket, are always being generated at a rate of r tokens per second. If the bucket is filled with less than b tokens when a token is generated, the newly generated token is added to the bucket; otherwise the newly generated token is ignored, and the token  bucket remains full with b tokens.
Suppose that before a packet is transmitted into the network, it must first remove a token from the token bucket. If the token bucket is empty, the packet must wait for a token. Because there can be at most b tokens in the bucket, the maximum burst size for a leaky-bucket-policed flow is b packets.  Because the token generation rate is r, the maximum number of packets that can enter the network of any interval of time of the length t is rt + b. thus, the token-generation rate, r serves to limit the long-term average rate at which packets can enter the network.

Leaky bucket + weighted fair queuing = provable maximum delay in a queue.

7.5.3 Diffserv

The internet Diffserv architecture provides service differentiation – that is, the ability to handle different classes of traffic in different ways within the internet in a scalable manner. The Diffserv architecture consists of 2 sets of functional elements:

· Edge functions: packets classification and traffic conditioning:  at the incoming edge of the network, arriving packets are marked. The mark that a packet receives identifies the class of traffic to which it belongs. Different classes of traffic will then receive different service within the core network.

· Core function: forwarding. When a DS-marked packet arrives at a Diffserv-capable router, the packet is forwarded into its next hop according to the so-called per-hop behavior (PHB) associated with that packet’s class. The per-hop behavior influences how a router’s buffers and link bandwidth are shared among the competing classes of traffic.

Packets arriving to the edge router are fist classified. The classifier selects packets based on the values of one or more packet header fields and steers the packet to the appropriate marking function. 
An end user may have agreed to limit  its packet-sending rate to conform to a declared traffic profile. The traffic profile might contain a limit on the peak rate, as well as the burstiness of the packet flow. 
As long as the user sends packets into the network in a way that confirms to the negotiated traffic profile, the packets receive their priority marking and are forwarded along their route to the destination. 
The role of the metering function, is to compare the incoming packet flow with the negotiated traffic profile and to determine whether a packet is within the negotiated traffic profile. The actual decision about whether to immediately remark, forward, delay, or drop a packet is a policy issue determined by the network administrator and is not specified in the Diffserv architecture.
In Per-hop behavior we can see several important considerations:
· A PHB can result in different classes of traffic receiving different performance
· While a PHB defines differences in performance (behavior) among classes, it does not mandate any particular mechanism for achieving these behaviors.
· Differences in performance must be observable and hence measurable

2 PHB’s have been defined:
· Expedited forwarding PHB specifies that the departure rate of a class of traffic from a router must be equal  or exceed a configured rate
· Assured forwarding PHB divides traffic into 4 classes, where each AF class is guaranteed to be provided with some minimum amount of bandwidth and buffering.

In order to provide end-to-end Diffserv, all the ISP’s between the end systems must not only provide this service, but most also cooperate and make settlements in order to offer end customers true end-to-end service.

There is the need for several new network mechanisms and protocols if a call is to be guaranteed a given quality of service once it begins:
· Resource reservation: the only way to guarantee that a call will have the resources needed to meet  its desired QoS is to explicitly allocate those resources to the call. This is known as resource reservation
· [bookmark: _gjdgxs]Call admission: if resources are to be reserved, then the network must have a mechanism for calls to request and reserve resources. Since the resources are not infinite, a call making a call admission request will be denied admission, that is, be blocked, if the requested resources are not available. Such a call admission is performed by the telephone network
· Call setup signaling. The call admission process is described above requires that a call be able to reserve sufficient resources at each and every network router on its source-to-destination path to ensure that its end-to-end QoS requirement is met. Each router must determine the local resources required by the session is met. Each router must determine the local resources required by the session, consider the amounts of its resources that are already committed to other ongoing  sessions, and determine whether it has sufficient resources to satisfy the per-hop QoS requirements of the session at this router without violating local QoS guarantees  made to an already-admitted session. A signaling protocol is needed to coordinate these various activities. This is the job of the call setup protocol: RSVP.


