
 Chapter 2: The application layer
2.1 Principles of network applications
In the Web application there are two distinct programs that communicate with each other:
· the browser program running in the user’s host
· the webserver program running in the webserver host
In a P2P file-sharing system there is a program in each host that participates in the file-sharing community. In this case, the programs in the various hosts may be similar or identical.
2.1.1 Network application architectures
The network architecture is fixed and provides a specific set of services to applications. The application architecture is designed by the application developer and dictates how the application is structured over various end systems. There are two predominant architectural paradigms:
· Client-server architecture: there is an always-on host (server), which services requests from many other hosts (clients). With this structure, the clients do not directly communicate with each other. The server has a fixed, well-known address called IP-address. Because the server has a fixed, well-known address, and because he is always on , a client can always contact the server by sending a packet to the server’s IP-address. A data center is often used to create a more powerful virtual server. A data center can have thousands of servers. The service providers must pay recurring interconnection and bandwidth costs for sending data from their data centers.
· P2P architecture: there is minimal or no reliance on dedicated servers in data centers. Instead, the application exploits direct communication between pairs of intermittently connected hosts, called peers. The peers are not owned by the service provider but are instead desktops and laptops controlled by the users. One of the most compelling features is the self-scalability. Each peer generates workload by distributing files to other peers. P2P architectures are also cost effective, since they don’t require significant server infrastructure and server bandwidth. But they have 3 major challenges:
· ISP friendly: residential ISPs have a asymmetrical bandwidth usage, for much more downstream than upstream traffic. But with P2P applications shift upstream traffic from servers to residential ISPs.
· Security: because of their highly distributed and open nature, P2P applications can be a challenge to secure.
· Incentives: P2P has to convince users to volunteer bandwidth, storage and computation resources to the application.
2.1.2 Processes communicating
It is not the programs but the processes that communicate. A process can be thought of as a program that is running within an end system. When processes are running on the same end system, they can communicate with each other with interprocess communication. Processes on two different end systems communicate with each other by exchanging messages across the computer network.
Client and server process
A network application consists of pairs of processes that send messages to each other over a network. We label one of the processes client and the other the server.
In the context of a communication session between a pair of processes, the process that initiates the communication is the client. The process that waits to be contacted to begin the session is the server.
The interface between the process and the computer network
Any message send from one process to another must go through the underlying network. A process sends messages into, and receives messages from, the network through a software interface called the socket(door). Once messages arrive at the destination host, the message passes through the receiving process’s door (socket), and the receiving process then acts on the message. So the socket is the interface between the application layer and the transport layer within the host. Is also called the Application programming interface (API).
Addressing processes
To identify the receiving process, two pieces of information need to be specified:
· The address of the host (IP-address)
· An identifier that specifies the receiving process in the destination host
2.1.3 Transport services available to applications
 The application at the sending side pushes messages through the socket. At the other side of the socket, the transport-layer protocol has the responsibility of getting the messages to the socket of the receiving process.
Reliable data transfer
If a protocol delivers correctly and completely to the other end of the application, the protocol provides a guaranteed data delivery service. It is said to provide reliable data transfer. When a transport-layer protocol doesn’t provide reliable data transfer, some of the data may never reach the receiving process. This may be acceptable for loss-tolerant applications.
Throughput
Throughput is the rate at which the sending process can deliver bits to the receiving process. Because other sessions will be sharing the bandwidth along the network path, and because these other sessions will be coming and going, the available throughput can fluctuate with time. Applications that have throughput requirements are said to be bandwidth-sensitive applications. While bandwidth-sensitive applications have specific throughput requirements, elastic applications can make use of as much, or as little throughput as happens to be available.
 Security
In the sending host, a transport protocol can encrypt all data transmitted by the sending process, and the receiving host, the transport-layer protocol can decrypt the data before delivering the data to the receiving process.
2.1.4 transport services provided by the internet
TCP services
It includes a connection-oriented service and a reliable data transfer service. TCP gives these three services:
· Connection-oriented service: TCP has the client and server exchange transport layer information with each other before the application-level messages begin to flow. This is the so-called handshaking procedure. After the handshaking phase, a TCP connection exists between the sockets of the two processes. This connection is full-duplex
· Reliable-data transfer: the communicating processes can rely on TCP to deliver all data sent without error and in the proper order.
· Congestion-control mechanism: a service for the general welfare of the internet. It throttles a sending process when the network is congested between sender and receiver.
UDP services
UDP is connectionless, so there is no handshaking before the two processes start to communicate. UDP provides an unreliable data transfer service, that is, when a process sends a message into a UDP socket, UDP provides no guarantee that the message will ever reach the receiving process. The messages that do arrive, may arrive out of order. UDP does not include a congestion-control mechanism, so the sending side of UDP can pump data into the layer below at any rate it pleases.
2.1.5 Application layer protocols
An application-layer protocol defines how an application’s processes, running on different end systems, pass messages to each other. A application-layer protocol defines:
· The types of messages exchanged
· The syntax of the various messages types, such as the fields in the message and how the fields are delineated
· The semantics of the field, that is, the meaning of the information in the fields
· Rules for determining when and how a process sends messages and responds to messages.
Some of the application-layer protocols are specified in RFCs (request for comment) and are therefore in the public domain.
2.2 The web and HTTP
2.2.1 Overview of HTTP
The Hypertext Transfer Protocol (HTTP) is implemented in two programs:
· A client program
· A server program
They talk to each other by exchanging HTTP messages. HTTP defines the structure of these messages and how the client and server exchange the messages.
A webpage consists of objects. An object is simply a file,… that is addressable by a single URL. Most webpages consist of a base HTML file and several referenced objects. The base HTML file references the other objects in the page with the object’s URL. Each URL has two components:
· The hostname of the server that houses the object
· The object’s path name
The Web browsers implement the client side of HTTP. Webservers will implement the server’s side HTTP. HTTP defines how Web clients request Web pages from the Web servers and how servers transfer Web pages to clients. The client requests a Web page, the browser sends HTTP request message to the server. The server receives the request and responds with HTTP response message that contains the object.
HTTP uses TCP as its underlying transport protocol. The HTTP client first initiates a TCP connection with the server. Once the connection is established, the browser and the server processes access TCP through their socket interfaces. Once the client sends a message into its socket interface, the message is out of the client’s hands and is “in the hands” of TCP. It is important to know that the server sends requested files to clients without storing any state information about the client. Because an HTTP-server maintains no information about the client, HTTP is said to be stateless protocol.
2.2.2 Non-persistent and persistent connections
HTTP with non-persistent connections
With non-persistent connections, each TCP connection is closed after the server sends the object – the connection does not persist for other objects. Note that each TCP connection transports exactly one request message and one response message.
The round-trip-time (RTT) is the amount of time that elapses from when a client requests the base HTML file until the entire file is received by the client. It is the time it takes for a small packet to travel from client to server and then back to the client.
The TCP connection involves a “three-way handshake”. The client sends a small TCP segment to the server, the server acknowledges and responds with a small TCP segment, and finally, the client acknowledges back to the server. The first two parts take one RTT. After completing the first two parts, the client sends the HTTP request message combined with the third part of the “three-way handshake” (the acknowledgement) into the TCP connection. Once the request message arrives at the server, the server sends the HTML file into the TCP connection. This HTTP request/response eats up another RTT. Thus the total response time is two RTT plus the transmission time at the server of the HTML file.
HTTP with persistent connections
With persistent connections, the server leaves the TCP connection open after sending response. In particular, an entire webpage (the base HTML and the x images) can be sent over a single persistent TCP connection. These requests can be made back-to-back, without waiting for replies to pending requests. Typically, the HTTP server closes a connection when it isn’t used for a certain time.
2.2.3 HTTP message format
HTTP request message
 Get /somedir/page.html HTTP / 1.1
Host: www.someschool.edu
Connection: close
User-agent: Mozilla / 5.0
Accept-language: fr

The GET method is used when the browser requests an object, with the requested object identified in the URL field.
The host specifies the host on which the objects resides. This information is required by web proxy caches.
With the close header line, the browser is telling the server to close the connection after sending the requested object.
The user-agent specifies the browser type that is making the request to the server.
The accept-language header indicates which language the user prefers to receive.

We see that the message consists of 5 lines, each followed by a carriage return and a line feed. The last line is followed by an additional carriage return and line feed.

The first line of an HTTP request message is called the request line; the subsequent lines are called the header lines. The request line has three fields:

· The method field
· The URL field
· HTTP version field

After the header lines there is an entity body. With the GET, the entity body is empty, but it is used with the POST. With the POST, the user is still requesting a Web page from the server, but the specific contents of the Web page depend on what the user entered into the from fields. When the method field is POST, then the entity body contains what the user entered into the form fields.

HTTP response message
HTTP / 1.1 200 OK
Connection: close
Date: Tue, 09 Aug 2011 15:44:04 GMT
Server: Apache / 2.2.3 (CentOS)
Last-modified: Tue, 09 Aug 2011 15:11:03 GMT
Content-length: 6821
Content-type: text / html
		(data data data data)

It has 3 sections:
· An initial status line
· Six header lines
· Entity body

The status line has three fields (HTTP / 1.1 200 OK):
· The protocol version field
· A status code a corresponding status message

The date header line indicates the time and date when the HTTP response was created and sent by the server.

Some common status code:
· 200 OK: request succeeded and the information is returned in the response
· 300 Moved Permanently: the requested object is moved to the new URL who is specified in Location. The client software will automatically retrieve the new URL
· 400 Bad Request: the request could not be understood by the server
· 404 Not Found: the requested document does not exist on the server
· 505 HHTP Version Not Supported: the requested HTTP protocol version is not supported by the server.

How does a web browser decide which header lines to include in a response message?
A browser will generate header lines as a function of:
· the browser type and version
· the user configuration of the browser
· whether the browser currently has a cached, but possibly out-of-date version of the object

2.2.4 User-server interaction: cookies

For websites it is often desirable to identify users, for theses purpose, HTTP uses cookies. Cookies allow sites to keep track of users. Cookies can be used to create a user-session layer on top of stateless HTTP. A cookie technology has four components:
· a cookie header line in the HTTP response message
· a cookie header line in the HTTP request message
· a cookie file kept on the user’s end system and managed by the user’s browser
· a back-end database at the Web site

Example:
When a request comes into the server, the server creates a unique identification number and creates an entry in its back-end database that is indexed by the identification number. The server then responds to the user, including in the HTTP response a Set-cookie, which contains the identification number. When the browser receives the response message, it sees the Set-cookie. The browser appends a line to the special cookie file that it manages. This line includes the hostname of the server and the identification number in the Set-cookie. As the user continues to browse the site, each time the user requests a web page, her browser consults her cookie file, extracts her identification number, and puts a cookie header line that includes the identification number in the HTTP request.

2.2.5 Web caching

A web cache – also called a proxy server – is a network entity that satisfies HTTP requests on behalf of an origin web server. The web cache has its own disk storage and keeps copies of recently requested objects in this storage.

Example:
· the browser establishes a TCP connection to the web cache and sends an HTTP request for the object to the web cache
· the web cache checks to see if it has a copy of the object stored locally. If it does, the web cache the object within an HTTP response message to the client browser
· if the web cache does not have the object, the web cache opens a TCP connection to the origin server. The web cache then sends an HTTP request for the object into the cache serer TCP connection. After receiving this request, the origin server sends the object within an HTTP response to the web cache
· when the web cache receives the object, it stores a copy in its local storage, and sends a copy within an HTTP response message to the client browser.

Note that a cache is both a server and a client at the same time. When it receives requests from and sends responses to a browser, it is a server. When it sends requests to and receives responses from an origin server, it is a client.

Benefits:
· web cache substantially reduce the response time for a client request
· web caches can substantially reduce traffic on an institution’s access link to the internet (example p138-139)

2.2.6 The conditional GET

Caching introduces a new problem: the copy of an object residing in the cache may be stale. The object housed in the web server may have been modified since the copy was cached at the client. HTTP has a special mechanism: conditional GET. An HTTP request message is a so-called conditional GET message if:
· the request message uses the GET message
· the request message includes an If-Modified-Since: header line

2.3 File transfer: FTP

The user is sitting in front of one host and wants to transfer files to or from a remote host. In order for the user to access the remote account, the user must provide a user identification and a password. After providing this authorization information, the user can transfer files from the local file system to the remote file system and vice versa.

HTTP and FTP are both file transfer protocols, they both run on top of TCP. FTP uses two parallel TCP connections to transfer a file:
· a control connection: is used for sending control information between the two hosts, such as password, username,…
· a data connection: is used to actually send the file.

Because FTP uses a separate control connection, FTP is said to send its control information out-of-band. HTTP sends request and response header lines into the same TCP connection. Therefore HTTP is said to send its control information in-band.

With FTP a new data connection is created for each file transferred within a session. The FTP server must maintain state about the user. The server must associate the control connection with a specific user account. HTTP is stateless and doesn’t have to keep track of any user state.

2.3.1 FTP commands and replies

Each command consists of four uppercase ASCII characters:
· USER username: send server the username of the user
· PASS password: send server the password of the user
· LIST: ask the server to send back a list of all files in the current remote directory
· RETR filename: retrieve a file from the current directory of the remote host
· STOR filename: store a file into the current directory of the remote host

Each command is followed by a reply, sent from the server to client. The replies are three-digit numbers with an optional message following the number:
· 331 Username OK, password required
· 125 Data connection already open; transfer starting
· 425 Can’t open data connection
· 452 Error writing file

2.4 Electronic mail in the internet

E-mail is an asynchronous communication medium – people send and read messages when it is convenient for them, without having to coordinate with other people’s schedules. The internet mail system has three major components:
· User agents
· Mail servers
· Simple mail transfer protocol (SMTP)
User agents allow users to read, reply, forward, save,… messages. The user agent sends the message to the mail server, where the message is placed in the mail server’s outgoing message queue. When the receiver wants to read the message, his user agent retrieves the message from his mailbox in his mail server. Mail servers form the core of the e-mail infrastructure.
When someone wants to access his mailbox, the mail server containing his mailbox authenticates the person.

SMTP is the principle application-layer protocol for internet electronic mail. It uses the reliable data transfer service of TCP to transfer mail from the sender to the receiver.

2.4.1 SMTP

SMTP transfers messages from sender’s mail server to the recipients’ mail server. SMTP restricts the body of all mail messages to simple 7-bit ASCII.

First the client SMTP has TCP establish a connection to port 25 at the server SMTP. If the server is down, the client tries again later. Once this connection is established, the server and client perform some application-layer handshaking. During this handshaking phase, the SMTP client indicates the e-mail address of the sender and the e-mail address of the recipient. Once the SMTP client and server have introduced themselves to each other, the client sends the message. SMTP can count on the reliable data transfer service of TCP to get the message to the server without errors. When all the messages are sent, SMTP orders TCP to close the connection.
If the sending mail server has several messages to send to the same receiving mail server, it can send all of the messages over the same TCP connection.

2.4.2 Comparison with HTTP

	SMTP
	HTTP

	transfers files from one mail server to another mail server.
	transfers files from a web server to a web client

	Push-protocol: the sending mail server pushes the file to the receiver mail server
	Pull-protocol: someone loads information on a web server and user use HTTP to pull information from the server at their convenience

	Requires each message body to be in 7-bit ASCII
	Doesn’t impose this restriction

	Places all of the message’s objects into one message
	Encapsulates each object in its own HTTP response message

2.4.3 Mail message formats

The header lines and the body of the message are separated by a blank line. Every header must have a FROM: header line and a TO: header line. The header lines are part of the mail message itself.

2.4.4 Mail access protocols

Mail access uses a client-server architecture. A typical user runs a user agent on the local PC and accesses its mailbox stored on an always-on shared mail server. This mail server is shared with other users and is typically maintained by the user’s ISP.

POP3

It is a simple mail access protocol. POP3 has two modes:
· download-and-delete mode
· the download-and-keep mode.

Its functionality is rather limited. POP3 begins when the user agent opens a TCP connection to the mail server on port 110. With this connection established, POP3 progresses through three phases:
· Authorization: the user agent sends a username and a password
· Transaction: the user agent retrieves the messages. Also during this phase, the user agent can mark messages for deletion, remove deletion marks, …
· Update: this phase starts after the client has issued the quit command. At this time, the mail server deletes the messages that where marked for deletion

There are two possible responses:
· +OK: used by the server to indicate that the previous command was fine
· -ERR: used by the server to indicate that something was wrong with the previous command.

IMAP

An IMAP server will associate each message with a folder; when a message first arrives at the server, it is associated with the recipient’s INBOX folder. He recipient can then move the message into a new, user-created folder, read the message, delete the message,…

An IMAP server maintains user state information across IMAP sessions. Another feature is that IMAP has commands that permit a user agent to obtain components of messages. This is useful when there is a low-bandwidth connection between the user agent and its mail server.

Web-based e-mail

More and more people are sending their e-mail through their web browsers. With this service, the user agent is an ordinary web browser, and the user communicates with its remote mailbox with HTTP. When a recipient, wants to access a message is his mailbox, the e-mail message is sent from the mail server o the browser using the HTTP protocol rather than POP3 or SMTP.

2.5 DNS-The internet directory service

 An internet host can be identified by his hostname or his IP address. An IP address is hierarchical because as we can scan the address from left to right, we obtain more information about where the host is located in the internet.

2.5.1 Services provided by DNS

Because there are two ways to identify a host, we need a directory service that translate hostnames to IP addresses. This is the main task of the internet Domain name system (DNS). The DNS is:
· A distributed database implemented in a hierarchy of DNS servers
· An application-layer protocol that allows hosts to query the distributed database

The DNS servers are often UNIX machines running the Berkeley internet name domain (BIND) software. The DNS protocol runs over UDP and uses port 53.

DNS adds an additional delay to the internet applications that use it. But the desired IP address is often ached in a “nearby” DNS server, which helps to reduce DNS network traffic as well as the average DNS delay.

DNS provides a few other services:
· Host and mail server aliasing: a host with a complicated hostname, can have one or more alias names. The real hostname is called a canonical hostname. Alias hostnames are typically more mnemonic than canonical hostnames.

· Load distribution: busy web sites are replicated over multiple servers, with each server running on a different end system and each having a different IP address. For replicated web servers, a set of IP addresses is thus associated with one canonical hostname. The DNS database contains this set of IP addresses. Because a client typically sends its HTTP request message to the IP address that is listed first in set, DNS rotation distributes the traffic among the replicated servers. DNS rotation is also used for e-mail so that multiple mail servers can have the same alias.

2.5.2 Overview of how DNS works

The application will invoke the client side DNS, specifying the hostname that needs to be translated. DNS in the user’s host then take over, sending a query message into the network. All DNS query and reply messages are sent within UDP datagrams to port 53. After a delay, DNS in the user’s host receives a DNS reply message that provides the desired mapping. This mapping is then passed to the invoking application.

The problem with a centralized design include:
· Single point of failure: if the DNS server crashes, so does the entire internet
· Traffic volume
· Distant centralized database: the server cannot be close to everyone.
· Maintenance: the server must have to keep records for all internet hosts

A distributed, hierarchical database

DNS users a large number of servers., organized in a hierarchical fashion and distributed around the world. There are three classes of DNS servers:
· Root servers
· Top-level domain (TLD servers
· Authoritative DNS servers

Suppose a client wants to determinate an IP address for the hostname www.amazon.com. The client first contacts one of the root servers, which returns IP address for TLD servers for the top-level domain com. The client then contact one of these TLD servers, which returns the IP address of the authoritative servers for amazon.com. The client contacts one of the authoritative servers for amazon.com, which returns the IP address form the hostname www.amazon.com.

The root, TLD, and authoritative DNS servers all belong to the hierarchy of DNS servers. There is another important type of DNS server called the local DNS server. A local DNS server does not strictly belong to the hierarchy of servers, but is nevertheless central to the DNS architecture. Each ISP has a local DNS server (default name server). When a host connects to an ISP, the ISP provides the host with the IP addresses of once or more of its local DNS servers.

There are two sorts of queries:
· recursive name query: the DNS client requires that the DNS server respond to the client with either the requested resource record. If a DNS server does not have the requested information when it receives a recursive query, it queries other servers until it gets the information, or until the name query fails.
· Iterative query: a DNS client allows the DNS server to return the best answer it can give based on its cache or zone data. If the queried DNS server does not have an exact match for the queried name, the best possible information it can return is a referral , a pointer to a DNS server authoritative for a lower level of the domain namespace.

DNS caching

In a query chain, when a DNS server receives a DNS reply, it can cache the mapping in its local memory. So when another query arrives, the DNS server can provide the desired IP address even if it is not authoritative for the hostname. Because hosts and mapping between hostnames and IP addresses are by mean not permanent, DNS servers discard cached information after a period of time.

2.5.3 DNS records and messages

DNS distributed database store resource records (RRs). A resource record is a four-tuple that contains the following fields:

			(Name, Value, Type, TTL)

TTL is the time of the resource record ; it determines when a resource should be removed from a cache. The meaning of name and value depend on type:
· If Type = A: then name is hostname, and value is the IP address
· If Type = NS: then name is a domain and value is the hostname of an authoritative DNS server that knows how to obtain the IP addresses for hosts in the domain
· If Type = CNAME: the value is a canonical hostname for the alias hostname name
· If Type = MX: the value is the canonical name of a mail server that has an alias hostname name

If a DNS server is authoritative for a particular hostname, then the DNS server will contain a Type A record for the hostname. If a server is not authoritative for a hostname, it will also contain a Type A record that provides the IP address of the DNS server in the value field of the NS record.

DNS messages

There are 5 sections in a DNS message:

· The first 12 bytes is the header section. The first field is a 16 bit number that identifies the query. This identifier is copied into the reply message to a query. There are also a number of flags in the flag field. In the header there are also four number-of fields. These fields indicate the number of occurrences of the four types of data sections that follow the header
· The question section contains information about the query that is being made. This section includes a name field that contains the name that is being queried and a type field that indicates the type of question.
· The answer section contains the resource records for the name that was originally queried.
· The authority section contains records of other authoritative servers
· The additional section contains other helpful records.

Inserting records into the DNS database

A registrar is a commercial entity that verifies the uniqueness of the domain name, enters the domain name into the DNS database, and collects a small fee from you for its services. You also need to provide the registrar with the names and IP addresses of your primary and secondary authoritative DNS servers. For these DNS servers, the registrar would then make sure that a Type A and a Type NS are entered into the TLD com servers. You’ll also have to make sure that Type A resource record for your web server and Type MX resource record for your server mail are entered into your authoritative DNS server.

Most recently an UPDATE option has been added to the DNS protocol to allow data to be dynamically added or deleted from the database via DNS messages.

Attacking DNS

· A DDoS bandwidth-flooding attack: an attacker could attempt to send to each DNS root server a deluge of packets, so many that the majority of legitimate queries never get answered. Most local DNS servers cache the IP addresses of top-level-domain servers, allowing the query process to often bypass the DNS root server
· A DDoS attack against TLD servers. It would be harder to filter DNS queries directed to DNS servers; and TLD servers are not as easily bypassed as root servers. But the severity of such an attack would be partially mitigated by caching in local DNS servers
· A man in the middle attack and DNS poisoning. With DNS poisoning, the attacker sends bogus replies to a DNS server, tricking the server into accepting bogus records into its cache.
· A DDoS attack against a targeted host. In this attack, the hacker sends DNS queries to many authoritative DNS servers, with each query having the spoofed source address of the targeted host. Then the attacker can potentially overwhelm the target without having to generate much of its own traffic.
[bookmark: _gjdgxs]
